Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The coronavirus disease 2019 (COVID-19) epidemic poses a threat to the everyday life of people worldwide and brings challenges to the global health system. During this outbreak, it is critical to find creative ways to extend the reach of informatics into every person in society. Although there are many websites and mobile applications for this purpose, they are insufficient in reaching vulnerable populations like older adults who are not familiar with using new technologies to access information. In this paper, we propose an AI-enabled chatbot assistant that delivers real-time, useful, context-aware, and personalized information about COVID-19 to users, especially older adults. To use the assistant, a user simply speaks to it through a mobile phone or a smart speaker. This natural and interactive interface does not require the user to have any technical background. The virtual assistant was evaluated in the lab environment through various types of use cases. Preliminary qualitative test results demonstrate a reasonable precision and recall rate.more » « less
-
The use of mobile devices, especially smartphones, has become popular in recent years. There is an increasing need for cross-device interaction techniques that seamlessly integrate mobile devices and large display devices together. This paper develops a novel cross-device cursor position system that maps a mobile device’s movement on a flat surface to a cursor’s movement on a large display. The system allows a user to directly manipulate objects on a large display device through a mobile device and supports seamless cross-device data sharing without physical distance restrictions. To achieve this, we utilize sound localization to initialize the mobile device position as the starting location of a cursor on the large screen. Then, the mobile device’s movement is detected through an accelerometer and is accordingly translated to the cursor’s movement on the large display using machine learning models. In total, 63 features and 10 classifiers were employed to construct the machine learning models for movement detection. The evaluation results have demonstrated that three classifiers, in particular, gradient boosting, linear discriminant analysis (LDA), and naïve Bayes, are suitable for detecting the movement of a mobile device.more » « less
An official website of the United States government

Full Text Available